
Mon. Not. R. Astron. Soc. 400, 183–203 (2009) doi:10.1111/j.1365-2966.2009.15470.x

Cosmic cartography of the large-scale structure with Sloan Digital Sky
Survey data release 6

Francisco S. Kitaura,1,2� Jens Jasche,2 Cheng Li,2,3 Torsten A. Enßlin,2

R. Benton Metcalf,2 Benjamin D. Wandelt,4 Gerard Lemson5,6

and Simon D. M. White2

1SISSA, Scuola Internazionale Superiore di Studi Avanzati, via Beirut 2-4, 34014 Trieste, Italy
2MPA, Max-Planck Institut für Astrophysik, Karl-Schwarzschildstr. 1, D-85748 Garching, Germany
3MPA/SHAO Joint Center for Astrophysical Cosmology at Shanghai Astronomical Observatory, Nandan Road 80, Shanghai 200030, China
4Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street Urbana, IL 61801-3080, USA
5Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12-14, 69120 Heidelberg, Germany
6MPE, Max-Planck Institut für Extraterrestrische Physik, Giessenbachstrae, D-85748 Garching, Germany

Accepted 2009 July 31. Received 2009 June 20; in original form 2009 March 12

ABSTRACT
We present the largest Wiener reconstruction of the cosmic density field made to date. The
reconstruction is based on the Sloan Digital Sky Survey (SDSS) data release 6 covering the
northern Galactic cap. We use a novel supersampling algorithm to suppress aliasing effects
and a Krylov-space inversion method to enable high performance with high resolution. These
techniques are implemented in the ARGO computer code. We reconstruct the field over a
500 Mpc cube with Mpc grid resolution while accounting for both the angular and the radial
selection functions of the SDSS, and the shot noise giving an effective resolution of the order
of ∼10 Mpc. In addition, we correct for the redshift distortions in the linear and non-linear
regimes in an approximate way. We show that the commonly used method of inverse weighting
the galaxies by the corresponding selection function heads to excess noise in regions where
the density of the observed galaxies is small. It is more accurate and conservative to adopt a
Bayesian framework in which we model the galaxy selection/detection process to be Poisson
binomial. This results in heavier smoothing in regions of reduced sampling density. Our results
show a complex cosmic web structure with huge void regions indicating that the recovered
matter distribution is highly non-Gaussian. Filamentary structures are clearly visible on scales
of up to ∼20 Mpc. We also calculate the statistical distribution of density after smoothing
the reconstruction with Gaussian kernels of different radii rS and find good agreement with a
lognormal distribution for 10 Mpc � rS � 30 Mpc.

Key words: methods: data analysis – methods: statistical – galaxies: clusters: general –
large-scale structure of Universe.

1 IN T RO D U C T I O N

Measuring the large-scale structure (LSS) of the Universe has be-
come a major task in cosmology in recent years. The relics of the
seed fluctuations, originating from the inflationary phase of the
early Universe, are mainly encoded in the linear regime of the LSS
in which structure formation has not significantly degraded the pri-
mordial phase information. In particular, there has recently been
a focus on measuring the baryon acoustic signal imprinted in the
galaxy distribution which has been suggested as a powerful standard
ruler for our Universe (see e.g. Eisenstein 2005).

�E-mail: kitaura@sissa.it; kitaura@mpa-garching.mpg.de

Upcoming and ongoing galaxy redshift surveys such as DEEP2 or
Baryon Oscillation Spectroscopic Survey (BOSS) will cover higher
and higher redshifts (see e.g. Davis et al. 2005; Schlegel et al. 2007).
They are designed to trace complex structures in the Universe and
to study the environment of galaxies and their evolution.

We carry a reconstruction of the density field dealing with sta-
tistical and systematic errors of the galaxy distributions with the
ARGO1 computer code described in (Kitaura & Enßlin 2008). ARGO is
a high-performance implementation of a three-dimensional Wiener
filter (WF), permitting treatments of an inhomogeneous and incom-
plete window function acting on the galaxy distribution. It exploits

1 Algorithm for the Reconstruction of the Galaxy-traced Overdensity field.
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the power of fast Fourier transforms (FFTs) and iterative Krylov-
space-based inversion schemes for the otherwise intractable data
inversion step.

Reconstructions permit us to characterize the LSS, helping to
deepen our understanding of structure formation, to gain insight into
the physical processes involved and to construct signal templates for
the detection of weak physical effects. These can be used to study
the cosmic microwave background (CMB) and to reveal signals
ranging from the Integrated Sachs–Wolfe effect (see e.g. Frommert,
Enßlin & Kitaura 2008), over the Sunyaev–Zel’dovich effect in
the diffuse gas, to metal absorption lines. An interesting further
application would be to constrain the bias between luminous and
dark matter using reconstructions made by ARGO and correlating
them with simulations and reconstructions of the matter distribu-
tion coming from other observables such as weak lensing, Lyman
α forest etc. Topological studies could be made from the recon-
structed data, leading to a geometrical characterization of the actual
LSS (see e.g. Sheth & Sahni 2005). It is also interesting to study
how the physical properties of galaxies depend on their large-scale
environment (Li et al. 2006b; Lee & Lee 2008; Lee & Li 2008). The
reconstructed structures of a galaxy catalogue can be traced back
in time with various methods, like those based on the Zel’dovich
(1970) approximation (see e.g. Nusser & Dekel 1992). These early
matter density fluctuations can be used as initial conditions for N-
body simulations. The results of such a constrained simulation have
a wide application in structure formation theory (see e.g. Mathis
et al. 2002). A joint estimation of the matter field and its power
spectrum would also be a natural next step given the technology we
develop below (for similar work in CMB analysis, see e.g. Jewell,
Levin & Anderson 2004; Wandelt, Larson & Lakshminarayanan
2004; Eriksen et al. 2007).

We present the first application of ARGO to observational data.
In particular, we have applied our method to recover the galaxy
density field based on data from Sample dr6fix of the New York
University Value Added Catalogue (NYU-VAGC), which was con-
structed from the Sloan Digital Sky Survey (SDSS; York et al.
2000) Data Release 6 (DR6; Adelman-McCarthy et al. 2008). This
leads to the largest Wiener reconstruction of the LSS made so far
effectively requiring the inversion of a matrix with about 108 × 108

entries. The use of optimized iterative inversion schemes within an
operator formalism (see Kitaura & Enßlin 2008) together with a
careful treatment of aliasing effects (see Jasche, Kitaura & Enßlin
2009) permits us to recover the overdensity field on Mpc scales
(for previous Wiener reconstructions, see Fisher, Scharf & Lahav
1994; Hoffman 1994; Lahav et al. 1994; Lahav 1994; Zaroubi et al.
1995; Fisher et al. 1995; Webster, Lahav & Fisher 1997; Zaroubi,
Hoffman & Dekel 1999; Schmoldt et al. 1999; Erdoğdu et al. 2004,
2006). Note that alternative density reconstruction techniques such
as Voronoi and Delaunay tesselations (see e.g. Icke & van de
Weygaert 1991; Ebeling & Wiedenmann 1993; Zaninetti 1995;
Bernardeau & van de Weygaert 1996; Doroshkevich, Gottlober &
Madsen 1997; Meurs & Wilkinson 1999; Kim et al. 2000; Schaap &
van de Weygaert 2000; van de Weygaert & Schaap 2001; Ramella
et al. 2001; Panko & Flin 2004; Zaninetti 2006) are tuned to opti-
mally represent the density field from a geometrical point of view,
but are not explicit in the statistical assumptions made on the galaxy
or matter distribution, which is an important aspect of our analysis
here.

We investigate in detail the statistical problem of finding an ex-
pression for a noise covariance which includes the survey angular
and radial selection functions. The expression we find assumes a
binomial model for the galaxy selection/detection process.

We show that including our proposed noise covariance matrix in
the WF leads to a more conservative reconstruction of matter struc-
tures than using the inverse weighting (IW) scheme. We also com-
pare the linear WF expression which is derived from a least-squares
approach and the non-linear WF which uses a signal-dependent
noise covariance (see appendix A in Kitaura & Enßlin 2008). The
latter shows to be even more conservative than the linear WF since
it strongly suppresses the cells with higher number counts.

Due to the fine mesh of the reconstruction (∼1 Mpc), a treatment
of the redshift distortion in the linear and non-linear regimes is
required. We choose a redshift distortion deconvolution method, as
presented by Erdoğdu et al. (2004), which aims to correct in both
regimes. This treatment only corrects the power and neglects any
phase information. For this reason, the effective resolution of the
reconstruction is lower than the resolution of the grid (∼10 Mpc).

Our paper is structured as follows. We start by describing the in-
put galaxy sample of the SDSS DR6 in Section 2. Then we present
the methodology used to perform an estimation of the matter field
(Section 3). In detail, the galaxy distribution is first transformed
into the comoving frame (Section 3.1.1) and then assigned to a
grid using our newly developed supersampling method (described
in Jasche et al. 2009) to correct for aliasing effects, ensuring a cor-
rect spectral representation of the galaxy distribution even up to the
highest modes contained in the grid (Section 3.1.2). Completeness
on the sky and radial galaxy selection function are then translated
into a three-dimensional mask, which will be part of the response
operator used in the filtering step (Section 3.1.3). Then, an observed
galaxy overdensity field is calculated which fulfils the statistical re-
quirements we want to impose on the matter field (Section 3.2).
Taking the observed galaxy field as the data vector we finally apply
a Wiener-filtering step with the ARGO computer code (Section 3.3.1)
followed by a deconvolution step, effectively correcting for the
redshift distortion (Section 3.3.2). Here, we distinguish between
a linear WF expression which is derived from a least-squares ap-
proach and a non-linear WF which uses a signal-dependent noise
covariance. Both WF formulations are tested with mock data and
quantitatively compared to a simple procedure in which the galax-
ies are inverse weighted with the completeness, then gridded and
finally smoothed to give a matter field estimate.

We present a reconstruction of the density field for the DR6
main sample in Section 5. First, we analyse the survey sky mask
(Section 5.1). Results for the Sloan Great Wall are then presented
in detail. Some other prominent structures, for example the Coma,
the Leo and the Hercules clusters, are also discussed (Section 5.2)
together with the detection of a large void region (Section 5.3).
The proper implementation of the filter enables us to deal with
complex masks which include unobserved regions. We demonstrate
the improved detection of overdensity regions close to edges of the
mask and the prediction of structures in gaps, as demonstrated by
comparing with data from the Data Release 7 (DR7) where these
gaps are filled (Section 5.4). In Section 5.5, we analyse the statistical
distribution of the density field and find good agreement with a
lognormal distribution for smoothing radii in a Gaussian filter in
the range 10 Mpc � rS � 30 Mpc. Finally, we make a summary of
the work and present our conclusions and future outlook.

2 INPUT GALAXY SAMPLE

In this study, we use data from the DR6 (Adelman-McCarthy et al.
2008) of the SDSS (York et al. 2000). The survey contains images
of a quarter of the sky obtained using a drift-scan camera (Gunn
et al. 1998) in the u, g, r, i, z bands (Fukugita et al. 1996; Smith
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et al. 2002; Ivezić et al. 2004), together with spectra of almost
a million objects obtained with a fibre-fed double spectrograph
(Gunn et al. 2006). Both instruments were mounted on a special-
purpose 2.5 metre telescope (Gunn et al. 2006) at Apache Point
Observatory. The imaging data are photometrically (Hogg et al.
2001; Tucker et al. 2006) and astrometrically (Pier et al. 2003)
calibrated and were used to select spectroscopic targets for the main
galaxy sample (Strauss et al. 2002), the luminous red galaxy sample
(Eisenstein et al. 2001) and the quasar sample (Richards et al. 2002).
Spectroscopic fibres are assigned to the targets using an efficient
tiling algorithm designed to optimize completeness (Blanton et al.
2003c). The details of the survey strategy can be found in York
et al. (2000) and an overview of the data pipelines and products is
provided in the Early Data Release paper (Stoughton et al. 2002).
More details on the photometric pipeline can be found in Lupton
et al. (2001) and on the spectroscopic pipeline in SubbaRao et al.
(2002).

We take data from Sample dr6fix of the NYU-VAGC. This is an
update of the catalogue constructed by Blanton et al. (2005) and
is based on the SDSS DR6 data and publicly available selection
masks.2 Starting from Sample dr6fix, we construct a magnitude-
limited sample of galaxies with spectroscopically measured red-
shifts in the range 0.001 < z < 0.4, r-band Petrosian apparent
magnitudes 14.5 < m ≤ 17.6 and r-band absolute magnitudes
−23 < M0.1r < −17. Here m is corrected for Galactic extinc-
tion, and the apparent magnitude limits are chosen in order to get
a sample that is uniform and complete over the entire area of the
survey. The absolute magnitude M0.1r is corrected to its z = 0.1
value using the K-correction code of Blanton et al. (2003a) and
the luminosity evolution model of Blanton et al. (2003b). We also
restrict ourselves to galaxies located in the main area of the survey
in the northern Galactic cap, excluding the three survey strips in
the southern cap, i.e. we include galaxies with right ascension (α)
and declination (δ) in the following ranges: 105o < α < 270o and
−5o < δ < 70o. In addition, we considered only galaxies which are
inside a comoving cube of side 500 Mpc (with equal side lengths:
Lx × Ly × Lz), as we describe below. These restrictions result in
a final sample of 255 818 galaxies.

In order to correct for incompleteness in our spectroscopic sam-
ple, we need to have complete knowledge of its selection effects. A
detailed account of the observational selection effects accompanies
the NYU-VAGC release. These include two parts: a mask on the
sky and a radial selection function along the line of sight. The mask
shows which areas of the sky have been targeted and which have
not, either because they are outside the survey boundary, because
they contain a bright confusing source or because observing con-
ditions were too poor to obtain all the required data. The effective
area of the survey on the sky defined by this mask, is 5314 deg2 for
the sample we use here. It is divided into a large number of smaller
subareas, called polygons, for each of which the NYU-VAGC lists
a spectroscopic completeness. This is defined as the fraction of the
photometrically defined target galaxies in the polygon for which
usable spectra were obtained. The average completeness over our
sample galaxies is 0.86. The radial selection function gives the frac-
tion of galaxies in the absolute magnitude range being considered
(−23 < M0.1r < −17 in our case) that are within the apparent
magnitude range of the sample (14.5 < m ≤ 17.6 in our case) at a
given redshift.

2 http://sdss.physics.nyu.edu/vagc/

In certain cases, we also work with a sample of galaxies drawn
from SDSS DR7 (Abazajian & Sloan Digital Sky Survey 2008)
for which the galaxy positions, redshifts and fluxes are publicly
available from the SDSS website3 but the survey completeness as
described above was not released at the moment this work started.
With this sample we apply only a gridding scheme and a subsequent
Gaussian smoothing, without accounting for any selection effects,
in order to qualitatively check for overdense regions present in the
gap in the SDSS DR6.

3 ME T H O D O L O G Y

In this section, we describe the main algorithms required to perform
a WF reconstruction of the matter field as described in Kitaura &
Enßlin (2008) (see also the pioneering works Wiener 1949; Rybicki
& Press 1992; Zaroubi et al. 1995). We start with the preparation
of the data followed by a filtering step and a final deconvolution.
Detailed descriptions of the methodology used for each step are
described in the following subsections.

3.1 Preparation of the data

Reconstructing a signal like the matter density field from the ob-
served galaxy sample requires a model which relates the underlying
matter field to the galaxy distribution. This model will define the
inverse problem, which can be solved with a reconstruction algo-
rithm. In this subsection, we describe how to prepare the input data
in such a way that it is consistent with the data model underlying
the ARGO code.

3.1.1 Transformation of the data into comoving coordinates

To apply a reconstruction algorithm which uses the correlation func-
tion in a comoving space, we first have to transform the redshift
distances into comoving distances for each galaxy by performing
the integral4

r ≡
∫

dz
1

cH (z)
, (1)

with H(z) being the Hubble parameter given by

H (z) = H0

√
�m(1 + z)3 + �K(1 + z)2 + ��, (2)

where we chose the concordance � cold dark matter (�CDM)
cosmology with �m = 0.24, �K = 0 and �� = 0.76 (Spergel
et al. 2007). In addition, we assumed a Hubble constant: H0 =
h km s−1 Mpc−1 with h = 73.

With this definition, the three-dimensional galaxy positions (X,
Y , Z) in the comoving space are calculated as follows:

X = r cos(δ) cos(α)

Y = r cos(δ) sin(α)

Z = r sin(δ).
(3)

3 http://www.sdss.org/dr7
4 Not to be confused with the r band.

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 400, 183–203



186 F. S. Kitaura et al.

3.1.2 Supersampling step

Now, we can sort the galaxies into a grid with a supersampling
scheme, which will permit us to apply a reconstruction scheme
based on FFTs. The much lower computational costs of FFTs permit
us to tackle much more ambitious matter reconstructions than have
been attempted previously with Wiener-filtering techniques. The
main difficulty in signal processing via FFT techniques arises from
the need to represent a continuous signal which extends to infinity
on a finite discrete grid. Various methods to approximate the real
continuous signal by a discrete representation have been proposed
in the literature, e.g. nearest grid point (NGP), cloud in cell (CIC)
or triangular shaped clouds (TSC; see e.g. Hockney & Eastwood
1981). However, all of these methods are only approximations to
the ideal low-pass filter and introduce discretization artefacts such
as aliasing. For a detailed discussion, see e.g. Hockney & Eastwood
(1981), Jing (2005), Cui et al. (2008) and Jasche et al. (2009). In
recent years a number of methods have been proposed to correct
for these artefacts, especially for the purpose of power-spectrum
estimation (Jing 2005; Cui et al. 2008). However, common methods
to suppress these artefacts in the discretized signals tend to be
numerically expensive.

To circumvent this problem, Jasche et al. (2009) proposed a
supersampling technique, which is able to provide discrete signal
representations with strongly suppressed aliasing contributions at
reasonable computational cost. This method relies on a two-step
filtering process, where in the first step the signal is pre-filtered by
sampling the signal via the TSC method to a grid with twice the
target resolution. In our case, we use a 10243 grid. In a second step
the ideal discrete low-pass filter is applied to the pre-filtered signal,
allowing us to sample the low-pass-filtered field at the lower target
resolution. In this fashion, we obtain an aliasing free signal sampled
at a target resolution of 5123 cells (with an equal number of cells in
each axis: Nx × Ny × Nz).

Let us define the observed galaxy sample as a point source dis-
tribution no

p(s) with coordinate s:

no
p(s) ≡

No
c∑

i=1

δD(s − si), (4)

with N o
c being the total observed galaxy number count and δD

the Dirac-delta function. The process of putting the galaxies on a
regular grid is equivalent to a convolution in a real space followed
by a grid-point selection step according to Hockney & Eastwood
(1981):

no(s) ≡ �
( s

H

) ∫
ds′ KS(s − s′)no

p(s′), (5)

with �(r) = ∑
n∈Z

δD(s − n), H being the grid spacing and KS

the supersampling kernel. We define the resulting field as the ob-
served galaxy number density no(s). The observed galaxy number
density is a function of the Cartesian position in a comoving space,
but includes redshift distortion. For this reason, we say that the
distribution is in a redshift space denoted by the coordinate s.

3.1.3 Calculation of the three-dimensional mask: completeness
on the sky and selection function

To define the data vector, we need to model the three-dimensional
mask. We do this by processing the two-dimensional sky mask
in several steps. First, the sky mask or completeness on the sky
wSKY(α, δ) is evaluated using the survey mask provided in Sample
dr6fix of the NYU-VAGC (see Section 2) on an equidistant α × δ

Figure 1. Radial selection functions used for the mock tests. Note that the
selection function used for the first mock test wMOCK1 is identical to the
radial completeness of the DR6 catalogue wDR6. The second selection func-
tion wMOCK2 is calculated by weighting wDR6(r) with the factor 100 Mpc/r
for r ≥ 100 Mpc.

grid with 165 000 × 75 000 cells having a resolution of 36 arcsec in
both right ascension and declination (see panel a in Fig. 6). Then,
we project the sky mask on a comoving Cartesian X × Y × Z grid
containing 5123 cells.

This is done with the transformation given by equation (3) taking
projected values of the mask every 0.25 Mpc in the radial direction
which are then assigned to the grid using the NGP method and
normalized by the number of mask counts in that grid cell. The
analogous procedure is done with the radial completeness wr(z), i.e.
the selection function which is available as a function of redshift.

Finally, we obtain the three-dimensional mask w(s) as a product
of the projected two-dimensional mask, i.e. the completeness on
the sky wSKY(α, δ), and the projected selection function wr(s) (see
Fig. 1, and Figs 6(a), 8(a), 9(a), 9(e) and 10(a) in Section 5). We
define w(s) ≤ 1.

3.2 Definition of the data model

Let us define the observed galaxy overdensity field as5

δo
g(s) ≡ no(s)

n
− w(s), (6)

with n being the mean galaxy number density.
The mean galaxy number density on the grid n is defined by the

quotient of the total number of observed galaxies N o
c and the ob-

served volume V o. Note that this assumes that the observed volume
is a fair sample of the Universe. We can then write

n ≡ N o
c

V o
≡

∑Ncells
i=1 N o

ci∫
dr w(r)

, (7)

with N o
ci being the number of observed galaxies at cell i : N o

c ≡∑N

i=1 N o
ci , Ncells being the total number of cells and the observed

volume being defined by the integral: V o ≡ ∫
dr w(r). The relation

between the expected galaxy number density in a small volume �V

5 Not to be confused with the declination δ.

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 400, 183–203



Cosmic cartography of the LSS with SDSS DR6 187

around position r ρg(r) and the mean galaxy number density in the
whole volume under consideration V is given by

ρg(r) ≡ n (1 + δg(r)), (8)

where δg(r) is the galaxy overdensity field, which describes the
spatial density distribution of galaxies. Here we assume that effects
due to galaxy evolution are negligible in the observed region and,
especially, that the mean number density is redshift independent.

The observed quantity δo
g(s) defined in equation (6) has to be

related to the signal, we seek to recover, via a data model. This
relation is to be inverted by the reconstruction algorithm.

3.2.1 Physical model

In this section, we describe the physical model which will enable
us to apply linear reconstruction methods and obtain an estimate
of the matter field valid on large scales (>1 Mpc). Let us assume
a continuous matter field δm(r) in a comoving space r as well as
a continuous galaxy field δg. We model the actual galaxies as be-
ing Poisson distributed according to this field with an expectation
density of n (1 + δg(r)). In general, the relation between the galaxy
overdensity field δg and the underlying matter field δm will be given
by a non-local and non-linear bias operator. However, the formalism
we present here, without any further development, allows us to ac-
count only for a non-local linear translation-invariant bias operator
B(r − r ′) of the form

δg(r) ≡
∫

dr ′ B(r − r ′)δm(r ′). (9)

Note that this linear operator is known to fail at least at sub-Mpc
scales. Several non-local biasing models are described in the liter-
ature, which are mainly used to correct for the shape of the power
spectrum on large scales (Tegmark et al. 2004; Hamann et al. 2008).
We will carry this general bias through the algebraic calculations.
However, in this work we consider the galaxy field to be a fair
sample of the matter field. Thus, we assume the special case of a
linear constant bias equal to unity: B(r , r ′) = δD(r −r ′), so that
δg = δm. Nevertheless, any non-local bias scheme of the form of
equation (9) can be adapted without the need to repeat the filtering.
We show that one can easily deal with non-local bias models in
a final deconvolution step (see equation 30). As a result, various
posterior biasing assumptions can be applied based on this recon-
struction to test different biasing models.

We will also assume the existence of a redshift distortion oper-
ator6 Z(s, r), which transforms the density field from a real space
into a redshift space. Note that the redshift distortion operator can-
not be a linear operator, since it depends on the matter field δm(r).
However, we will approximate it with a linear redshift distortion
operator Z(s, r) here

δg(s) ≡
∫

dr Z(s, r)δg(r), (10)

and postpone a matter-field-dependent treatment, sampling the pe-
culiar velocity field as proposed in (Kitaura & Enßlin 2008), for
later work.

Let us further assume an additive noise term resulting in a data
model for the observed galaxy overdensity as

δo,th
g (s) ≡ w(s)

∫
dr Z(s, r)

∫
dr ′ B(r − r ′)δm(r ′) + ε(s), (11)

6 Not to be confused with the Z-axis in our Cartesian grid.

with ε being the noise term. The corresponding vector representa-
tion of the data model can be approximated as

δo,th
g,s ≡ WsZs,rBrδm,r + εs , (12)

with the subscripts r and s denoting the real space and redshift
space, respectively. The response operator can be defined by

Rs,r ≡ WsZs,rBr , (13)

with Ws being the three-dimensional mask operator defined in con-
tinuous space by W (s, s′) = w(s)δD(s − s′), Zs,r being the redshift
distortion operator and Br being the bias operator. Now we need to
specify a model for the noise term.

3.2.2 Statistical model

Assuming that the galaxy distribution is generated by an inhomoge-
neous Poissonian distribution, the number galaxy count Nc within
a volume �V around position r is distributed as

Nc(r) ∼ PPois(Nc(r)|λ(r)) (14)

with

PPois(Nc(r)|λ(r)) = λ(r)Nc(r)

Nc(r)!
exp(−λ(r)), (15)

where the expected number of galaxy counts is given by the Poisso-
nian ensemble average: λ(r) = 〈N c(r)〉g and is directly related to the
expected galaxy density ρg at that position: ρg(r) ≡ 〈N c(r)〉g/�V .
Here, 〈{ }〉g ≡ 〈{ }〉(Nc|λ) ≡ ∑∞

Nc=0 PPois(Nc | λ){ } denotes an en-
semble average over the Poissonian distribution. We further model
the observational selection of N o

c (r) galaxies out of the Nc present
within the small volume �V to be a binomial selection with an
acceptance rate w(r). We can then write

N o
c (r) ∼ PBin(N o

c (r)|Nc(r), w(r)), (16)

with

PBin(N o
c (r) | Nc(r), w(r))

=
(

Nc(r)
N o

c (r)

)
(w(r))N

o
c (r)(1 − w(r))(Nc(r)−No

c (r)).

The expected mean observed number of galaxies in the volume �V

is〈
N o

c (r)
〉

w
= w(r)Nc(r), (17)

where 〈{ }〉w ≡ 〈{ }〉(No
c |Nc,w) ≡ ∑∞

No
c =0 PBin(N o

c | Nc, w){ } repre-
sents the ensemble average over the binomial distribution with a
selection probability w. Consequently, one can model the observed
number of galaxies, as a single Poissonian process:

N o
c (r) ∼ PPois(N

o
c (r)|λo(r)), (18)

with mean

λo(r) ≡ w(r)λ(r) = w(r)〈Nc(r)〉g = 〈〈N o
c (r)〉g〉w. (19)

Note that the Poissonian and the binomial distributions commute
with each other.

3.2.3 Noise covariance and data autocorrelation matrix

Let us define the noise covariance matrix, according to the assump-
tions made in the previous section, as the shot noise resulting from
an inhomogeneous Poisson distribution for the galaxy distribution
n(s) and a binomial distribution for describing the observation pro-
cess which reduces the fraction of observed galaxies following the
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selection function. We then obtain an expression for the noise co-
variance:7

NSD(s1, s2) ≡ 〈ε(s1)ε(s2)〉(ε|δm, pε ) ≡ 〈〈ε(s1)ε(s2)〉g〉w

≡ 1

n2 (〈〈no(s1)no(s2))〉g〉w − 〈〈no(s1)〉g〉w〈〈no(s2)〉g〉w)

= 1

n2 〈〈no(s1)〉g〉wδD(s1 − s2)

= 1

n2 w(s1)〈n(s1)〉gδD(s1 − s2), (20)

where we have used the properties of the variance and mean of these
distribution functions and have added the superscript SD to denote
that this covariance matrix is signal dependent (see Section 2.5.3
and appendix A in Kitaura & Enßlin 2008). Note that this noise
covariance is defined as the ensemble average of the correlation
matrix of the noise over all possible noise realizations denoted
by the subscript (ε |δm, pε) with pε being a set of parameters
which determine the noise. Here, we have neglected the cell-to-cell
correlation introduced by the gridding scheme we have used (TSP)
as the first step in our supersampling scheme.

Having defined the data model, together with the noise model,
we can calculate the expected data autocorrelation matrix, which is
defined as the ensemble average over all possible galaxy realizations
and density realizations (cosmic variance) leading to the following
expression:〈〈〈

δo,th
g (s1)δo,th

g (s2)
〉

w

〉
g

〉
m

= w(s1)w(s2)
∫

dr1 Z(s1, r1)
∫

dr2 Z(s2, r2)

×
∫

dr ′
1 B(r1 − r ′

1)
∫

dr ′
2 B(r2 − r ′

2) 〈δm(r ′
1)δm(r ′

2)〉m

+〈N (s1, s2)〉m,
(21)

with 〈{ }〉m ≡ 〈{ }〉(δm| pm) ≡ ∫
dδmP (δm | pm) being the ensemble

average over all possible matter density realizations with some prior
distribution P (δm| pm) with pm being a set of parameters which
determine the matter field, say the cosmological parameters. Note
that this equation is only valid in the approximation where the bias
and the redshift distortion operators are linear.

The noise term in equation (21) has the following form:

NLSQ(s1, s2) ≡ 〈NSD(s1, s2)〉m ≡ 〈ε(s1)ε(s2)〉(δm,ε| p)

≡ 1

n
w(s1)δD(s1 − s2), (22)

since 〈〈n(r)〉g〉m = 〈n (1 + δg(r ′))〉m = n, assuming again that
the observed volume is a fair sample of the Universe. The noise
covariance has been denoted with the superscript LSQ because it
corresponds to the expression which is obtained by performing the
LSQ approach to derive the WF, i.e. minimizing the ensemble av-
erage of the squared difference between the real underlying density
field δm and the LSQ estimator δLSQ

m over all possible signal δm

and noise ε realizations: 〈(δm − δLSQ
m )2〉(δm,ε| p) with p being the joint

set of parameters: p ≡ { pm, pε} (for a derivation, see appendix B
in Kitaura & Enßlin 2008). We have also assumed that the cross-
terms between the noise and the signal are negligible: 〈δmε†〉m =
0. This should be further analysed in future work. Higher order
correlations between the noise and signal in fact exist, and can be
exploited using schemes such as the Poissonian scheme proposed in

7 Not to be confused with the galaxy number counts Nc.

(Kitaura & Enßlin 2008). Note, however, that we consider a signal-
dependent noise for the WF equation (20) which requires a model
for the expected observed galaxy number density 〈〈no(s1)〉g〉w (for
differences in the derivation, see Kitaura & Enßlin 2008). We re-
strict ourselves to the LSQ noise covariance model NLSQ given
by equation (22) in our application to the SDSS data (Section 5).
Note that the LSQ representation of the WF is a linear operator in
contrast to the alternative formulation which depends on the signal
and thus is a non-linear filter. We explore methods to deal with the
signal-dependent noise formulation with mock galaxy catalogues
and compare the results to the LSQ version of the WF (see Sec-
tion 4).

Note that by construction, the data autocorrelation matrices for
the observed galaxy overdensity field and the theoretical overdensity
field are identical given the noise model in equation (20):〈〈〈

δo,th
g (s1)δo,th

g (s2)
〉

g

〉
w

〉
m

=
〈〈〈

δo
g(s1)δo

g(s2)
〉

g

〉
w

〉
m

. (23)

3.3 Reconstruction algorithm

In this section, we propose a two-step reconstruction process: first
a WF step and second a deconvolution step.

3.3.1 Wiener filtering

First, we recover the galaxy field in the redshift space (δg,s) by
applying the WF. The version of the WF we use can be derived as
follows. Let us approximate the posterior distribution assuming a
Gaussian prior and a Gaussian likelihood:

P (δg,s | δo
g,s , p) ∝ exp

(
− 1

2

[
δg,s

†Sg,s
−1δg,s

+ (δo
g,s − Wsδg,s)

†Ns
−1(δo

g,s − Wsδg,s)
])

, (24)

with the signal autocorrelation matrix Sg,s ≡ 〈δg,s(δg,s)†〉 being the
inverse Fourier transform of the assumed model galaxy power spec-

trum in the redshift space: ˆ̂Sg,s(k, k′) ≡ (2π )3P s
g (k′)δD(k − k′) and

the hats denoting the Fourier transform of the signal autocorrela-
tion matrix. Note that the posterior distribution also depends on a
set of parameters p which determine the power spectrum P s

g(k).
The log-posterior distribution is then given by

log P (δg,s | δo
g,s , p) ∝

δg,s
†Sg,s

−1δg,s + (δo
g,s − Wsδg,s)

†Ns
−1(δo

g,s − Wsδg,s)

= δg,s
†Sg,s

−1δg,s + δg,s
†W†

s Ns
−1Wsδg,s − δg,s

†W†
s Ns

−1δo
g,s

− δo
g,s

†Ns
−1Wsδg,s + δo

g,s

†Ns
−1δo

g,s . (25)

The first two terms can be combined to one term: δg,s † (σ 2
WF)−1

δg,s, using the Wiener variance: σ 2
WF ≡ (S−1 +W†s N−1

s Ws)−1. To
find the mean of the posterior distribution, we seek an expression
for the log-posterior of the form

log P (δg,s | δo
g,s , p) ∝ (δg,s − 〈δg,s〉WF)†(σ WF

2)−1(δg,s − 〈δg,s〉WF),

(26)

with 〈δg,s〉WF = FWF δo
g,s being the mean after applying the WF FWF

to the data. Now the third and the fourth terms of equation (25) can
be identified with the terms in equation (26) as

−δg,s
†W†

s Ns
−1δo

g,s = −δg,s
† (

σ 2
WF

)−1
FWFδ

o
g,s (27)
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and

−δo
g,s

†Ns
−1Wsδg,s = −δo

g,s

†F†
WF

(
σ 2

WF

)−1
δg,s , (28)

respectively. The remaining term depends only on the data and is
thus factorized in the posterior distribution function as part of the
evidence. From both equations (27) and (28), we conclude that the
WF has the form

FWF = σ 2
WFW

†
s Ns

−1 = (
S−1 + W†

s N
−1
s Ws

)−1
W†

s Ns
−1. (29)

The mean 〈δg,s〉WF of the posterior distribution defined by equa-
tion (24) can be obtained by

〈δg,s〉WF = (
S−1

g,s + W†
s N

−1
s Ws

)−1
W†

s N
−1
s δo

g,s . (30)

We favour this signal-space representation8 of the WF with
respect to the equivalent and more frequently used data-
space representation in LSS reconstructions: 〈δg,s〉WF =
Sg,sW

†
s

(
WsSg,sW

†
s + N

)−1
δo

g,s (see e.g. Zaroubi et al. 1995), be-
cause it avoids instabilities which otherwise arise in our rapid algo-
rithm for evaluating the filter.

Let us distinguish between the linear LSQ and the non-linear
signal-dependent noise formulation of the WF. The first takes the
matter-field-averaged noise, covariance equation (22) N = NLSQ

and is used below when analysing the SDSS data (see Section 5).
In the case of a signal-dependent noise: N = NSD, one needs an es-
timate of the expected observed galaxy number density w(s)λ(s) ≡
〈 〈 no (s)〉g〉w (see equation 20 and Section 3.4.2). Such an approach
was done by Erdoğdu et al. (2004).

3.3.2 Deconvolution step

In the second reconstruction step, we deconvolve the galaxy field
〈δg,s〉WF from the assumed redshift distortion and galaxy bias op-
erators, obtaining an estimate for the underlying matter field in the
real space:

〈δm,r〉WF = B−1
r Z−1

r,s 〈δg,s〉WF. (31)

In this approximation, we can easily transform the reconstructed
galaxy field into the matter field by just performing a final decon-

volution with some scale-dependent bias of the form ˆ̂B(k, k′) ≡
b(k)δD(k − k′). As already mentioned above, our result should not
be restricted to a single arbitrary chosen bias model. We therefore
choose to recover the galaxy field by assuming a bias equal to unity
from which matter reconstructions for all possible linear (and invert-
ible) bias schemes can easily be constructed via equation (31). Note
that an alternative representation of the WF which regularizes the
bias and the redshift distortion operator when they are not invertible
consists of including them in the response operator (equation 13)
when calculating the WF, leading to 〈δm,r〉WF = (S−1

m,r + R†
r,sN−1

s

Rs,r)−1 R†
r,sN−1

s δo
g,s.

3.3.3 Redshift distortion operator

Following Erdoğdu et al. (2004), we define the power spectrum in
the redshift space as the product of the power spectrum in the real
space and an effective redshift distortion factor given by the angle-
averaged Kaiser factor9 K(k, μ) times the damping Lorentzian
factor D(k, μ):

P s
m(k) ≡ 〈K(k, μ)D(k, μ)〉μP r

m(k), (32)

8 We use here the terminology introduced in (Kitaura & Enßlin 2008).
9 Not to be confused with the supersampling kernel KS.

with μ =k · r/(|k| |r|). The Kaiser factor is given by (see Kaiser
1987)

K(k, μ) ≡ (1 + βμ2)2, (33)

with β being the redshift distortion parameter which can be approx-
imated by β  �0.6

m assuming a constant bias equal to unity and
neglecting dark energy dependences (see Lahav et al. 1991). The
Lorentzian damping factor is based on an exponential distribution
in the real space for the pairwise peculiar velocity field and is given
by

D(k, μ) ≡ 1

1 + (
k2σ 2

v μ2
)
/2

, (34)

with k ≡ |k| and σ v being the average dispersion velocity of the
galaxies, which we assume to be σ v = 500 km s−1 H−1

0 (see
e.g. Ballinger, Peacock & Heavens 1996; Jing, Mo & Boerner 1998;
Jing & Börner 2004; Li et al. 2006a).

We refer to Erdoğdu et al. (2004) for the angle-average expres-
sion of the product of the Kaiser factor and the damping factor.
Consequently, we introduce the angular-averaged redshift distor-
tion operator defined as the square root of the factor in the previous
equations:

ˆ̂Z(k, k′) ≡
√

〈K(k′, μ)D(k′, μ)〉μδD(k − k′). (35)

By construction, this operator yields the correct power-spectrum
modification for the translation from the real to the redshift space.10

Note that this approximation is valid up to second-order statistics
and gives only an effective solution to the redshift distortion due
to the angular averaging. A proper solution would require a phase
and direction-dependent redshift distortion operator. If we assume
that the galaxy bias is unity, we then can write the galaxy power
spectrum in the redshift space as P s

g(k′) = 〈K(k, μ)D(k, μ)〉μ

P r
m(k). Note that this reduces the validity of our reconstruction to

scales larger than the mesh resolution which is of about 1 Mpc to
scales of about 10 Mpc. The power spectrum in the real space P r

m is
given by a non-linear power spectrum that also describes the effects
of virialized structures with a halo term as given by (Smith et al.
2003) at redshift z = 0. In addition to the cosmological parameters
presented in Section 3.1.1, we assume a spectral index ns = 1.
With each of the required operators defined, we can now apply our
reconstruction algorithm as we demonstrate in the next section.

3.4 Signal-dependent noise formulation of the Wiener filter

To apply the signal-dependent noise formulation of the WF, one
needs to find estimators for the expected density field in the signal-
dependent noise covariance (equation 20). We require a good esti-
mator either for λo (r) ≡ 〈〈N o

c (r)〉g〉w or for λ(r) ≡ 〈N c(r)〉g since
λo (r) ≡ w(r)λ(r).

3.4.1 Flat prior assumption

The IW estimator used in previous works to estimate the noise
covariance (see e.g. Erdoğdu et al. 2004) can be derived from the

10 Note that we deviate here from Erdoğdu et al. (2004) in the order of the
angular averaging and square root. An inspection of the power spectrum cor-
responding to the reconstructions however shows that only the prescription
as implemented here leads to agreement with the non-linear (Smith et al.
2003) power spectrum.
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frequentist approach by assuming a flat prior for the overdensity
distribution or equivalently infinite cosmic variance.

Let us start with the Bayes theorem:

P
(
λo|N o

c

) = P
(
N o

c |λo
)
P (λo)

P
(
N o

c

) . (36)

The flat prior is defined as P (λo) = c, with c being a constant. The
evidence is then given by

P
(
N o

c

) =
∫ ∞

0
dλo P

(
N o

c |λo
)
c = c, (37)

since∫ ∞

0
dλo P

(
N o

c |λo
) =

∫ ∞

0
dλo (λo)N

o
c e−λo

N o
c !

= �
(
N o

c + 1
)

N o
c !

= 1.

(38)

Consequently, we obtain that the posterior distribution is equal to
the likelihood

P
(
λo|N o

c

) = P
(
N o

c |λo
)
. (39)

The maximum likelihood estimator λmax is obtained by looking at
the extrema:

0 = ∂P
(
λmax|N o

c

)
∂λmax

= (N o
c (wλmax)−1w − w)

(wλmax)N
o
c e−wλmax

N o
c !

= N o
c λ−1

max − w, (40)

leading to

λmax = N o
c

w
. (41)

Note that the maximum estimator λmax is not a valid estimator for the
noise covariance matrix, since it can become zero at cells in which
no galaxy count is present even if the cell belongs to the observed
region. The mean estimator λo

mean can be found by performing the
following integral:

λo
mean ≡

∫ ∞

0
dλo λo P

(
λo|N o

c

)

=
∫ ∞

0
dλo (λo)N

o
c +1e−λo

(
N o

c + 1
)
!

(
N o

c + 1
)
. (42)

Thus, we have

λmean ≡ λo
mean

w
= 1

w

(
N o

c + 1
)
. (43)

The mean estimator λmean gives a regularized solution with respect to
the maximum estimator λmax overcoming the problem of having zero
noise at cells with zero observed number counts. Both estimators
however rely on the flat prior assumption which can be dominated
by the shot noise for low completeness. This can be a problem when
the reconstruction is performed on a fine mesh with extremely low
completeness. For this reason, we test the SD WF with an alternative
scheme presented in the next section.

3.4.2 Statistically unbiased jackknife-like scheme

The jackknife-like scheme we present here and test in the next sec-
tion produces subsamples from a galaxy distribution with selection
function effects which are statistically unbiased with the underlying
mean number density having a noise term with a structure function
depending only on λ(r). The first step of the scheme consists of

generating a subsample using the binomial distribution given the
observed number counts and the selection probability α/w(r) with
a tunable parameter α < min(w(r)):

N ′
c(r) ∼

⎧⎨
⎩

PBin

(
N ′

c(r) | N o
c (r), α

w(r)

)

PPois(N
′
c(r) | αλ(r)).

In the second step, the subsample N ′
c(r) is inverse weighted

with α:

N ′′
c (r) ≡ 1

α
N ′

c(r). (44)

One can note that the ensemble average over all possible α realiza-
tions leads to the mean number density λ(r):

〈〈N ′′
c (r)〉(Nc|λ)〉α = 1

α
〈〈N ′

c(r)〉(Nc|λ)〉α = 〈Nc(r)〉(Nc|λ) = λ(r). (45)

Here, 〈{ }〉α is a binomial average with acceptance frequency α.
The estimator for 〈λo(r)〉JK ≡ w(r)N ′′

c (r), with the subscript JK
standing for the jackknife estimator. We test the estimator proposed
here to sample the noise covariance (see Section 4).

4 QUA L I T Y VA L I DAT I O N O F T H E R A D I A L
SELECTI ON FUNCTI ON TREATMENT

In this section, we evaluate the quality of the reconstruction method
under several incompleteness conditions. We restrict the study to a
mesh of 1283 cells for a cube with 500 Mpc side length and ignore
bias and redshift distortion effects. The necessity of performing a
reconstruction step to make further studies of the LSS is addressed.
More simple schemes in which the galaxies are just gridded and the
resulting field smoothed are shown to lead to significantly worse
estimates of the matter field.

For this study, we consider a homogeneous subsample of 106

galaxies in a 500 Mpc cube box from the mock galaxy catalogue
by (De Lucia & Blaizot 2007) selected at random based on the
Millennium Simulation (Springel et al. 2005). We define the 106

galaxy sample as our complete sample. Then, we generate two in-
complete samples by radially selecting the galaxies according to
two different radial completeness functions wMOCK1 and wMOCK2,
respectively (see Fig. 1). This is done by drawing random uniform
numbers between 0 and 1 for each mock galaxy and selecting the
galaxies depending on whether the drawn number is above or be-
low the value of the completeness at the corresponding distance to
the observer. Note that this ensures a perfect binomial observation
process treating all the galaxies independent of their luminosity and
thus avoiding the problem of galaxy biasing. The observer is de-
fined in both cases at an equivalent position in the box to the real
observer in the application to the observed DR6 data (Section 5),
namely at X = 0 Mpc, Y = 250 Mpc and Z = 20 Mpc. Note that the
arbitrary coordinates of the mock data range from 0 to 500 Mpc in
each direction X, Y and Z.

We consider the LSQ formulation of the WF, which is a linear
filter with a homogeneous noise term multiplied with a structure
function given by the selection function equation (22), and the
signal-dependent noise formulation, which is a non-linear filter as
it depends on the signal (see equation 20), and the IW scheme.
In addition to the Wiener-reconstruction methods, we define an
IW scheme to estimate the underlying matter field as follows: first
each galaxy is weighted with the inverse of the completeness at
its location, then the galaxy sample is gridded according to the
corresponding particle masses (we use our supersampling scheme
to suppress aliasing) and finally the resulting field is convolved with
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Figure 2. Mock test 1 using wMOCK1. Input galaxy sample ∼20 per cent of the complete galaxy sample. Slices around Y ∼ 270 Mpc through a 500 Mpc cube
box with a 1283 grid for different quantities without smoothing. Panel (a): observed mock galaxy overdensity field before correcting for the incompleteness.
Panel (b): DR6 radial completeness corresponding to this test. Panel (c): underlying complete mock galaxy field. Panel (d): IW scheme applied to the sample
represented in (a). Note that panels (a), (c) and (d) were created taking the mean over 10 neighbouring slices around the slice at Y ∼ 270 Mpc, corresponding
to a thickness of 40 Mpc.

different smoothing kernels. The first part of this scheme, leaving
the smoothing for a later step, can be summarized by the following
equation:

〈n(r)〉IW ≡ �
( r

H

) ∫
dr ′ KS(r − r ′)

1

w(r ′)
no

p(r ′), (46)

where we have denoted the corresponding estimator by the angles:
〈{ }〉IW. Note that the completeness cannot be zero at a position
in which a galaxy was observed. In order to make a quantitative
comparison between the two Wiener-filtering methods and the IW
method, a true underlying field δtrue needs to be defined. Since the
IW scheme does not correct for the shot noise, we will compare
with the complete mock galaxy sample (see panel c in Fig. 2) after
smoothing on different scales. Note that a consistent comparison
for this case is difficult, since the shot noise varies with the different
galaxy samples and with the distance to the observer. For the Wiener
reconstruction case study, we define the true underlying matter field

δtrue as the resulting Wiener reconstruction taking the complete
mock galaxy sample (see panel e in Fig. 2). Note that the true field
thus also differs between our two Wiener-filtering schemes. We will
denote the reconstructed fields with each method as δrec.

4.1 Statistical correlation measures

To give a quantitative measurement of the quality of the reconstruc-
tions, we define the correlation coefficient r between the recon-
structed and the true density field by11

r(δrec, δtrue) ≡
∑Ncells

i δtrue
i δrec

i√∑Ncells
i

(
δtrue
i

)2
√∑Ncells

j

(
δrec
j

)2
. (47)

11 Not to be confused with the comoving distance r.
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The cell-to-cell plot of the reconstruction against the true density
field is highly informative because the scatter in the alignment of
the cells around the line of perfect correlation (45◦ slope) gives a
qualitative goodness of the reconstruction. In general, the quality
of the recovered density map is better represented by the Euclidean
distance between the true and the reconstructed signals (see Kitaura
& Enßlin 2008). The ensemble average of this quantity over all
possible density realizations can also be regarded as an action or a
loss function that leads to the WF through minimization (see Kitaura
& Enßlin 2008). Here, we introduce the Euclidean distance:

DEuc(δ
rec, δtrue) ≡

√√√√ 1

Ncells

Ncells∑
i

(
δrec
i − δtrue

i

)2
, (48)

with N cells = 1283 for the mock tests. Let us, in addition, define the
normalized Kullback–Leibler distance12 (see Kullback & Leibler
1951) as

DKL(1 + δrec, 1 + δtrue) ≡ 1

Ncells

Ncells∑
i

(
1 + δrec

i

)
log

(
1 + δrec

i

1 + δtrue
i

)
.

(49)

In our analysis, we also compute smoothed versions of the density
field convolving it with a Gaussian kernel given by

G(r, rS) ≡ exp

( |r|2
2r2

S

)
, (50)

with rS being the smoothing radius.

4.2 First mock test

In the first mock test, we try to emulate the same completeness
conditions as given in the observed DR6 sample. For that, we take
the complete mock galaxy catalogue (106 galaxies) and select ac-
cording to the DR6 radial selection function (wMOCK1 = wDR6) a
subsample leaving about 20 per cent of the total number of galaxies
(218 020) (see Fig. 2). The DR6 radial selection function can be seen
as the black line in Fig. 1. A section through the box showing the
completeness can be also seen in panel (b) of Fig. 2. The observer
can be identified as being at the centre of the spherical shells with
equal completeness. The resulting overdensity field after applying
this selection function to the complete mock sample can be seen
in panel (a) of Fig. 2. Note that we show here the mock-observed
galaxy field by setting w = 1 in equation (6) in order to clearly
see the selection effects. In the following, the discrete galaxy field
(including Poisson noise) is represented with red colour and the
noise-corrected field is represented in blue colour. We will define
the complete mock galaxy field including Poisson noise (panel c
in Fig. 2) as the true galaxy density field for the IW scheme. The
corresponding noise-corrected fields using the LSQ WF (panel a in
Fig. 3) and the SD WF (panel b in Fig. 3) are defined as the true
galaxy density field for the Wiener reconstructions. The true dark
matter field is approximately related to this via equation (9); how-
ever, here we want to exclude the complication of galaxy biasing.

Panel (d) in Fig. 2 shows the result after applying the IW scheme.
Panels (b) and (d) of Fig. 3 show the respective reconstructions using
the LSQ and the SD WF, respectively. One can clearly see the noisy
reconstruction produced by the IW scheme for structures located

12 Also called relative entropy in information theory.

at large distances to the observer in contrast to the smoother esti-
mation made by the Wiener-filtering schemes. The SD WF was ap-
plied for the complete galaxy sample using our statistically unbiased
jackknife-like scheme with an α parameter of 10−3. The means after
200 reconstructions are shown in panels (c) and (d) for the complete
and the selected samples, respectively. The corresponding statistical
analysis can be seen in Fig. 4. The cell-to-cell correlation plots show
the tendency of the IW scheme to overestimate the density while the
opposite is true in a significantly more moderate way when applying
the WF. In the case without smoothing (a mesh of size ∼3.9 Mpc)
(panels a and d in Fig. 4), the qualitative and quantitative difference
between the methods is very large, showing a significantly better
correlation coefficient and lower Euclidean and Kullback–Leibler
distances for the Wiener reconstructions than for the IW scheme.
Only when the fields are smoothed with a Gaussian of radius
rS = 5 Mpc does the difference between the matter field estima-
tors drop. With this smoothing, the statistical correlation coefficient
is similar for the WF and the IW scheme. However, the Euclidean
and Kullback–Leibler distances remain being lower for the WF
reconstructions (see Fig. 4).

4.3 Second mock test

For the second mock test results, we modify the DR6 selection
function to drop faster towards larger radii leaving less than 10
per cent of the galaxies (87 220) by weighting wDR6(r) with the
factor 100 Mpc/r for r ≥ 100 Mpc. The corresponding radial se-
lection function (wMOCK2) can be seen as the dashed line in Fig. 1.
The dramatic difference from DR6 completeness can be seen using
LSQ and SD formulations, respectively. The noisy reconstruction
produced by the IW scheme for structures located at large distances
to the observer is now even more visible than in the previous test.
Cells far away from the observed are excessively weighted. The
WF in contrast gives a smoother and more conservative estimation
in regions in which the data are more incomplete. However, it re-
mains sharp in regions where the information content is high (see
structures close to the observer).

The corresponding statistical analysis can be seen in Fig. 5. The
tendency to overestimate the density of the IW scheme is now
extreme. Smoothing helps to raise the correlation coefficient values
and to decrease the Euclidean and Kullback–Leibler distances. They
remain, however, clearly above the ones achieved with the WF
schemes.

5 MATTER FI ELD RECONSTRUCTI ONS
O F T H E SD S S D R 6

This work presents the first application of the ARGO code to observa-
tional data. This yields the matter field reconstruction of the SDSS
DR6 in the main area of the survey which is located in the northern
Galactic cap on a comoving cube of side 500 Mpc and 5123 cells.

In this section we describe a few remarkable features in the recon-
structed matter field, demonstrating the quality of the reconstruction
and the scientific potential for future applications. First, we discuss
the mask and the projected three-dimensional reconstruction with-
out smoothing and after smoothing with a Gaussian kernel with
smoothing radii of rS = 5 Mpc and rS = 10 Mpc as displayed in
Fig. 6. We then describe the largest structures in the nearby Uni-
verse, in particular the Sloan and CfA2 Great Walls (see Geller &
Huchra 1989; Gott et al. 2005). Later, we analyse void or cluster
detections which can be made with this kind of work. Finally, we
analyse the statistical distribution of matter.
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Figure 3. Mock test 1 using wMOCK1. Input galaxy sample ∼20 per cent of the complete galaxy sample. Slices around Y ∼ 270 Mpc through a 500 Mpc cube
box with a 1283 grid for different quantities without smoothing. Panel (a): LSQ Wiener reconstruction to correct for the shot noise of the mock galaxy field
taking the complete sample. Panel (b): LSQ Wiener reconstruction of the incomplete mock galaxy field taking into account the averaged shot noise and the
radial selection function. Panel (c): mean over 200 Bayesian Wiener reconstructions to correct for the shot noise of the mock galaxy field taking the complete
sample. Panel (d): mean over 200 SD Wiener reconstruction of the incomplete mock galaxy field taking into account shot noise and the radial selection function.
Note that all the panels were created taking the mean over 10 neighbouring slices around the slice at Y ∼ 270 Mpc, i.e. over a slice of thickness 40 Mpc.

5.1 Mask and completeness

The sky mask for the region is shown in panel (a) of Fig. 6. The high
resolution (36 arcsec in both α and δ) permits us to visualize the
plates of the SDSS with the intersection of several plates leading to
higher completeness. The mask is divided into three patches: one
small beam at high declination and right ascension angles and two
wide regions. All the patches together cover almost a quarter of
the sky. Between the two wider regions, there is a large gap and
there are several additional smaller gaps inside the patches. Such a
complex mask is an interesting problem for the ARGO code. It allows
us to test whether it can properly handle unobserved regions with
zero completeness. Slices of the three-dimensional mask calculated
as the product of the completeness on the sky and the selection
function (see Section 3.1.3) are presented in panel (a) of Figs 8–
10 and panel (e) of Fig. 9. In these plots, one can see how the

selection function leads to a decrease of the completeness in the
radial direction. Note that the observer is located at (0, 0, 0) in our
Cartesian coordinate system. We can see in panel (a) of Fig. 8 that
the completeness rapidly reaches its maximum at around 110 Mpc
distance from the observer and decreases at larger radii to values
below 10 per cent. In the next section we show how remarkably
homogeneous structures are recovered in our reconstruction, in-
dependent of the distance from the observer and despite the low
completeness values at large distances. We confirmed with addi-
tional reconstructions with larger volumes the same behaviour for
boxes up to side lengths of around 750 Mpc. For even larger vol-
umes of a 1 Gpc size, not shown here, however, the main sample
becomes too sparse and only the LSS are recovered. Including the
three-dimensional completeness for the SDSS DR6 data (see Sec-
tion 3.1.3) in equation (7), we obtain a mean galaxy density of about
0.05.
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Figure 4. Statistical cell-to-cell correlation between the mock true density field δtrue and the reconstructed density field δrec at different scales for our first test
case using wMOCK1. Input galaxy sample ∼20 per cent of the complete galaxy sample. Also indicated are the statistical correlation coefficient r, the Euclidean
distance DEuc and the Kullback–Leibler distance DKL first for all the sample (black dots), then for the sample in the radial comoving radius range between 200
and 400 Mpc (green dots) and finally in the range between 0 and 200 Mpc (red dots) away from the observer. The upper panels correspond to the comparison
without smoothing and the lower panels after smoothing with a smoothing radius of rS = 5 Mpc. Comparison between the complete mock galaxy field (in
this case: δtrue) and the IW scheme applied to the incomplete sample (in this case: δrec) without smoothing (a) and after smoothing panel (d). Panels (b) and
(e) represent the comparison between the average shot-noise-corrected complete mock galaxy field (in this case: δtrue) and the LSQ Wiener reconstruction
of the incomplete sample (in this case: δrec) with the corresponding scale at bottom or top. Panels (c) and (f) represent the comparison between the local
shot-noise-corrected complete mock galaxy field (in this case: δtrue) and the SD Wiener reconstruction of the incomplete sample using the jackknife estimator
(in this case: δrec) with the corresponding scale at bottom or top.

Figure 5. Same as Fig. 4, but using wMOCK2.

5.2 Mapping the Sloan and the CfA2 Great Wall

The Sloan Great Wall is one of the largest structures known in our
local Universe although it is not a gravitationally bound object (see
Gott et al. 2005). It extends for about13 400 Mpc (for a detailed

13 Note that the extension of the Sloan Great Wall is usually given in lu-
minosity distance, which can be around 40 Mpc larger than in comoving
distance as we represent it here.

study, see Deng et al. 2006) and is located around 300 Mpc distant
from Earth. In Fig. 7 we represent different radial shells, picking
out the structures of the Sloan Great Wall, which extends from
about 140◦ to 210◦ (−150◦ in Fig. 6) in right ascension and extends
within a few degrees around declination δ ≈ 0◦. In these shells other
complex structures can be observed at higher declinations, show-
ing filaments, voids and clusters of galaxies. Moreover, the region
which has not been observed, lying outside the mask (see panel a in
Fig. 6), is predicted to be filled with structures by the reconstruction
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Figure 6. Panel (a): completeness of the observed patches on the sky. Shown are projections on the sky of the three-dimensional matter field reconstruction,
including the deconvolution with a redshift distortions operator and divided by the number of line of sight grid points used for the calculation to obtain a
mean density field on the sky: without smoothing (panel b) after a convolution with a Gaussian kernel with a smoothing radius of rS =5 Mpc (panel c) and
rS = 10 Mpc (panel d). Note that the longitude angles −90◦, −120◦, −150◦ and −180◦ correspond to 270◦, 240◦, 210◦ and 180◦ right ascension angles,
respectively, with the positive angles being equal. For a general right ascension angle α, the longitude is calculated as α −360◦ for α ≥ 180◦. The latitude
angles are identical to the declination angles.

method according to our assumed correlation function (see Sec-
tion 3.3.3). The Sloan Great Wall can also be seen in Fig. 8 almost
in its full extent. We can see how ARGO recovers the matter field, bal-
ancing the structures with a low signal-to-noise ratio against those
with a higher signal, leading to a homogeneously distributed field,
meaning that clusters close to and far from the observer are both
well represented. Only where the signal-to-noise ratio drops below
unity do structures tend to blur, as can be observed in the upper
parts of the reconstruction shown in Fig. 9.

The CfA2 Great Wall is also one of the largest structures known
in our local Universe and contains the Coma Cluster (Abell 1656)
at its centre (see Geller & Huchra 1989). We can clearly see the
Coma Cluster in the projected reconstruction without smoothing,

being the big spot at right ascension α ≈ 195◦ (−165◦ in Fig. 6) and
declination δ ≈ 28◦ in panel (b) of Fig. 6, located at a distance of
∼100 Mpc from the observer (see Thomsen et al. 1997; Carter et al.
2008). The CfA2 Great Wall cannot be seen in its full extent in Fig. 8
because it reaches higher declination angles than selected in the plot.
However, it can be partially seen as an elongated matter structure at
about a 100 Mpc distance to the observer, i.e. at around −100 Mpc
in the X-axis in Fig. 8. Large filamentary structures are present even
after smoothing with a Gaussian kernel with a smoothing radius of
rS = 10 Mpc (see panel d in Fig. 8). The second major cluster of
the Coma super-cluster is the Leo Cluster (Abell 1367) at a distance
of ∼94 Mpc (z ≈ 0.022), with galactic coordinates α ≈ 176◦ and
δ ≈ 20◦. It is weakly detected in our reconstruction as can be seen
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Figure 7. Different radial slices around the Sloan Great Wall. Shown are projections of the three-dimensional matter field reconstruction on the sky considering
only cells with a comoving distance between 290 Mpc and 310 Mpc (panel a), 300 Mpc and 320 Mpc (panel b), 310 Mpc and 330 Mpc (panel c), and 320 Mpc
and 340 Mpc (panel d). Note that the longitude angles −90◦, −120◦, −150◦ and −180◦ correspond to 270◦, 240◦, 210◦ and 180◦ right ascension angles,
respectively, with the positive angles being equal. For a general right ascension angle α, the longitude is calculated as α − 360◦ for α ≥ 180◦. The latitude
angles are identical to the declination angles.

in panel (b) of Fig. 6, since it is partially located in the major gap
of DR6 and should be therefore better detected with DR7.

The Hercules supercluster also belongs to the CfA2 Great Wall.
Most of the clusters which belong to this supercluster can be iden-
tified in the reconstructed area. Since the spatial range of these
clusters is large, we have listed in Table 1 the groups of clusters
with their respective localization in the sky which appear as espe-
cially prominent overdensity regions in the projected reconstruction
(for references, see Abell, Corwin & Olowin 1989; Struble & Rood
1999). Note that close-by structures such as the Virgo Cluster, which
is at a distance of only about 18 Mpc to us, cannot be detected in
our reconstruction, because the lower limit of our sample is set at
z = 0.01.

5.3 Detection of a great void region

The scorpion-like form of the matter distribution spanning the whole
observed region in Fig. 9 (see the mask in panel a) shows large con-
nected filamentary structures with many clusters. Interestingly, an
extremely large void is spanned in the region with −150 Mpc <

Y < 30 Mpc and 70 < Z < 220 Mpc (see panels a–c in Fig. 9).
In order to evaluate the confidence of the detection, one should
check how deeply this region has been scanned by the SDSS. By
inspection of the three-dimensional mask, we confirm a fairly high
completeness ranging from about 30 per cent to about 65 per cent
(see panel a of Fig. 9). The extension in the X-axis is still un-
clear, since the gap in the mask grows in the void region to larger
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Figure 8. Slices around the Sloan and the CfA2 Great Wall. Panel (a): slice through the three-dimensional mask multiplied with the selection function at
∼7 Mpc in the Z-axis. Panels (b)–(d) show slices through the reconstruction after taking the mean over 20 neighbouring slices around the slice at ∼7 Mpc in
the Z-axis, without smoothing, convolved with a Gaussian kernel with a smoothing radius of rS = 5 Mpc and rS = 10 Mpc, respectively. Note that panel (b)
represents log(1 + δ), whereas panels (c) and (d) show δ.

distances to the observer. ARGO predicts an extension of about −250
< X < −450 Mpc. From our results, we can tell that it is one of
the largest voids in the reconstructed volume, having a diameter
of about 150 Mpc. Conclusive results can only be obtained after
investigating DR7, which fills the main gaps. Since, in this case, a
proper treatment of the DR7 mask is required and this mask was
not public at the time this project started, we postpone this study for
later work. The large overdensity region found in the unobserved
region at about −30 < Y < 30 Mpc and 370 < Z < 430 Mpc results
from the correlation with a huge cluster region which extends in the
range −30 < Y < 30 Mpc and 350 < Z < 450 Mpc and which can
be best seen at about X ∼ −170 Mpc (see panels e and f in Fig. 9).

5.4 Cluster prediction

The signal-space representation of the WF (see Section 3.3.1) en-
ables us to deal with unobserved regions, i.e. cells with zero com-
pleteness. Note that for these cells, the noise term vanishes in the
WF expression (equation 30). The filter can then be regarded as

a convolution with the non-diagonal autocorrelation matrix of the
underlying signal propagating the information from the windowed
region into the unobserved cells. This gives a prediction for the LSS
in these regions. Such an extrapolation can be clearly seen in panels
(b)–(d) of Fig. 6. These show the projected three-dimensional re-
construction on the sky without smoothing and after a convolution
with a Gaussian with smoothing radii rS of 5 and 10 Mpc, respec-
tively. In these plots the gaps are hardly distinguishable, due to the
signal prediction given by the WF. We have chosen a slice, in which
the propagation of the information through gaps can be analysed. In
panel (a) of Fig. 10, we can see the three-dimensional mask through
our selected slice. The main gap crosses the entire box through the
Y-axis and reaches about 50 Mpc width in the Z-axis. Several other
smaller gaps are distributed in the slice. In the reconstruction in
panel (b), we can see how the main gap is partially filled with some
diffuse overdensity structures which are produced precisely as de-
scribed above. Panel (c) shows the same reconstruction smoothed
with a Gaussian kernel with a smoothing radius of rS = 5 Mpc. The
mask showing the regions in which it was observed is overplotted.
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Figure 9. Panel (a): slice through the three-dimensional mask multiplied with the selection function at ∼ −109 Mpc in the X-axis. Panels (b)–(d) show slices
through the reconstruction after taking the mean over 20 neighbouring slices around the slice at ∼ −109 Mpc in the X-axis, without smoothing, convolved
with a Gaussian kernel with a smoothing radius of rS = 5 Mpc and rS = 10 Mpc, respectively. Panel (e): slice through the three-dimensional mask multiplied
with the selection function at ∼ −168 Mpc in the X-axis. Panel (f) shows a slice through the reconstruction after taking the mean over 20 neighbouring slices
around the slice at ∼ −168 Mpc in the X-axis without smoothing. Note that panels (b) and (f) represent log(1 + δ), whereas panels (c) and (d) show δ.
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Table 1. Some of the most prominent clusters in the reconstruction with their corresponding right ascension and declination in
degrees and redshift. Note that the right ascension angle in Fig. 6 is indicated in parenthesis and can be calculated as α − 360◦ for
α ≥ 180◦.

Supercluster Cluster Abell number ∼R.A. α (◦) ∼Dec. δ(◦) ∼Redshift

Coma Coma A1656 195◦ (−165◦) 28◦ 0.0231
Coma Leo A1367 176◦ (176◦) 20◦ 0.0220

Hercules A2040 228◦ (−132◦) 7◦ 0.0448
Hercules A2052 229◦ (−131◦) 7◦ 0.0338
Hercules A2063 231◦ (−129◦) 9◦ 0.0341
Hercules Hercules A2151 241◦ (−119◦) 18◦ 0.0354
Hercules A2147 241◦ (−119◦) 16◦ 0.0338
Hercules A2152 241◦ (−119◦) 16◦ 0.0398
Hercules A2148 241◦ (−119◦) 25◦ 0.0418
Hercules A2162 243◦ (−117◦) 29◦ 0.0310
Hercules A2197 247◦ (−113◦) 41◦ 0.0296
Hercules A2199 247◦ (−113◦) 40◦ 0.0287

Figure 10. Panel (a): slice through the three-dimensional mask multiplied with the selection function at ∼ −256 Mpc in the X-axis. Panels (b) and (c) show
slices through the reconstruction after taking the mean over 20 neighbouring slices around the slice at ∼ −256 Mpc in the X-axis, without smoothing and
convolved with a Gaussian kernel with a smoothing radius of rS = 5 Mpc, respectively. Panel (d): DR7 sample gridded with NGP and convolved with a
Gaussian kernel with a smoothing radius of rS = 5 Mpc. In panels (c) and (d), the DR6 mask is overplotted. Note that there is some correspondence between
the structures predicted in the gap from the Sample dr6fix and the observed galaxy distribution there in DR7. Note that panel (b) represents log (1 + δ), whereas
panels (c) and (d) show δ.
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Table 2. Approximate positions of cluster candidates ci (with i ranging from
1 to 10) at a slice around −265 Mpc < X < −245 Mpc in the reconstructed
box which are located close to gaps (see Fig. 10).

c1 −220 Mpc < Y < −200 Mpc 140 Mpc < Z < 180 Mpc
c2 −140 Mpc < Y < −100 Mpc 120 Mpc < Z < 160 Mpc
c3 10 Mpc < Y < 20 Mpc 120 Mpc < Z < 160 Mpc
c4 10 Mpc < Y < 30 Mpc 70 Mpc < Z < 90 Mpc
c5 60 Mpc < Y < 70 Mpc 70 Mpc < Z < 90 Mpc
c6 150 Mpc < Y < 160 Mpc 60 Mpc < Z < 70 Mpc
c7 220 Mpc < Y < 240 Mpc 90 Mpc < Z < 110 Mpc
c8 −210 Mpc < Y < −200 Mpc 70 Mpc < Z < 90 Mpc
c9 −110 Mpc < Y < −90 Mpc 70 Mpc < Z < 90 Mpc
c10 −40 Mpc < Y < −60 Mpc 70 Mpc < Z < 90 Mpc

We identify seven clusters close to gaps extending into unobserved
regions at a slice around −265 < X < −245 Mpc (see clusters c1–
c7 in Table 2). In addition, there are some weaker detections (see
clusters c8–c10 in Table 2). The gap which cluster c1 extends into and
the largest gap are the ones in which more information propagation
occurs. There is an especially interesting region in the main gap
around −140 < Y < 30 Mpc in which the algorithm predicts a high
chance to find overdense structures. The rest of the gaps remains
with low density values, since no prominent structures are in their
vicinity. We investigate the public DR7 archive (see Section 2)
to check for overdense regions in the gap. Note that without a
full angular and radial selection function treatment, a quantitative
comparison is not possible. We restrict our study by gridding the
galaxy sample with the NGP, ignoring mask or selection function
effects and convolving it with a Gaussian kernel with a smoothing
radius of rS = 10 Mpc (see panel d in Fig. 10). Though faint features
such as the filaments lying at around −230 < Y < −130 Mpc
cannot be recovered, stronger features such as the clusters located at
−100 < Y < 0 Mpc show that there is indeed an overdense region
in the gap confirming our prediction based on DR6. In particular,
the extension of the clusters c1 and c2 are very well predicted by our
algorithm. Cluster c10 is weakly predicted. The filament connecting
clusters c3 and c10 is predicted by ARGO, perhaps by chance, but the
resemblance in the gap of the reconstruction to the real underlying
distribution shows that use of the correlation function of the LSS
allows for plausible predictions.

5.5 Statistics of the density field

From a physical point of view, one would expect a lognormal distri-
bution of smoothed density for a certain range of smoothing scales,
if one assumes an initial Gaussian velocity field and extrapolates the
continuity equation for the matter flow into the non-linear regime
with linear velocity fluctuations (see Coles & Jones 1991). Since the
lognormal field is not able to describe caustics, we expect this distri-
bution to fail below a threshold smoothing scale. There should also
be a transition at a certain scale between this quasi-linear regime
and the linear regime where the matter field is still Gaussian dis-
tributed. Due to use of the WF which considers only the correlation
function to reconstruct the density field and the Gaussian smooth-
ing, we expect the density field to be closely Gaussian distributed
in the unobserved regions. Here, we analyse the statistical distribu-
tion of the density field by counting the number of cells at different
densities with a density binning of 0.03 in (1 + δm) at different
scales, defined by convolving the reconstruction with a Gaussian
kernel with smoothing radii rS of 10, 20 and 30 Mpc. We performed

the analysis for different radial shells in the �r14 ranges: 0 < r <

200 Mpc, 200 < r < 400 Mpc, r > 400 Mpc and 0 < r < 600 Mpc,
separating observed (w > 0) and unobserved (w = 0) regions (see
Figs 11 and 12). Note that due to shot noise, we are missing power
in the filtered reconstruction on small scales. Moreover, the discrete
Fourier representation of the signal implies negative densities (see
Jasche et al. 2009). This obliges us to perform this statistical anal-
ysis on scales larger than the smallest grid scales. We can see this
in the excess of low density cells for the dashed black curve (rS =
5 Mpc). In addition to that, we are also limited by the size of the
box, having less information as we go to larger and larger scales.
This effect can be appreciated in the stronger deviation from the
lognormal fit around the peak for the green line (rS = 30 Mpc). For
this reason, we restrict this analysis to the range of scales given
above. The plots in Figs 11 and 12 show how the distribution tends
towards Gaussianity as we go to larger and larger scales.

We calculated the skewness and kurtosis to quantify the devia-
tion from Gaussianity. Let us define here the statistical quantities
required for our analysis. The number of cells contained in a shell
of radial range �r is given by the sum of the number counts in each
density bin f B

�r,i:

N�r
cells ≡

N�r
bins∑
i

f B
�r,i . (51)

The mean overdensity in �r , which is very close to zero, is calcu-
lated as

δB
�r ≡ 1

N�r
cells

N�r
bins∑
i

f B
�r,iδ

B
�r,i , (52)

with the superscript B standing for bin. These two previously defined
quantities permitted us to calculate the central n-moments μn of the
distribution with

μn(�r) ≡ 1

N�r
cells

N�r
bins∑
i

f B
�r,i

(
δB
�r,i − δB

�r

)n

. (53)

Note that the variance is just the second moment: σ 2 ≡ μ2. Now,
we can define the skewness:15

s ≡ μ3

σ 3
(54)

and the kurtosis:16

k ≡ μ4

σ 4
− 3. (55)

Let us also introduce Pearson’s skewness defined as the mean δB

minus the mode δB
max(f ) (overdensity bin with the maximum number

of counts max (f )) normalized by the square root of the variance:

sP(�r) ≡
δB
�r − δB

max(f B(�r))

σ (�r)
. (56)

The results are shown in Figs 11 and 12 demonstrating large de-
viations from Gaussianity in the observed regions and negligible
deviations for the unobserved regions. Since the WF uses only the
first two moments of the matter distribution, we do not expect large
deviations from Gaussianity in the unobserved regions where there
are almost no data constraining the result. Note that in Figs 11
and 12, the skewness and kurtosis are also given (skewness: s10,

14 Note that we considered the density at the centre of the bins.
15 Note that for a Gaussian distribution, s = 0.
16 Note that for a Gaussian distribution, μ4/σ

4 = 3 and thereby k = 0.
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Figure 11. Statistical distribution of cells at different densities with a density binning of 0.03 in (1 + δm). The curves represent the distribution for the
reconstructed matter field at different scales (rS: continuous: 10 Mpc, dashed: 20 Mpc, dotted: 30 Mpc). The upper panels show the statistics at different radial
shells in the observed region (w > 0) and the lower panels show the same in the unobserved region (w = 0). The corresponding skewness: s10, s20, s30; kurtosis:
k10, k20, k30; and Pearson’s skewness: sP10, sP20, sP30 are also given.

Figure 12. Statistical distribution of cells at different densities with a density binning of 0.03 in (1 + δm). The dashed curves represent the distribution for
the reconstructed matter field at different scales (rS: black: 10 Mpc, red: 20 Mpc, green: 30 Mpc). The corresponding skewness: s10, s20, s30; kurtosis: k10,
k20, k30; and Pearson’s skewness: sP10, sP20, sP30 are also given. Left: (observed region: w > 0) continuous lines: best-fitting lognormal distributions using
a non-linear least-squares fit based on a gradient-expansion algorithm, dashed–dotted curves: Gaussian distributions for the measured means and variances.
Right: (unobserved region: w = 0), continuous lines: Gaussian distributions for the measured means and variances with the corresponding statistical correlation
coefficients r20, r40 and r60.

s20, s30; kurtosis: k10, k20, k30; Pearson’s skewness: sP10, sP20, sP30,
with the subscript denoting the smoothing radius in Mpc). Pearson’s
skewness is always larger for the observed regions than for the un-
observed regions after smoothing with rS = 10 and rS = 20 Mpc,
and all distributions show a positive skewness. The skewness and
kurtosis values show that the matter distribution starts to be closely
Gaussian distributed after smoothing with a radius rS of 30 Mpc.
Nevertheless, for the region 200 < r < 400 Mpc we find a large
deviation from Gaussianty even at that scale. LSS such as the Sloan
Great Wall can be responsible for this. Furthermore, we analysed in
great detail the matter distribution in the region 0 < r < 600 Mpc

which has better statistics. On the right-hand panel of Fig. 12, we
can see the statistics for the unobserved region. The dashed curves
show the measured distributions at different scales (black: rS =
10 Mpc, red: rS = 20 Mpc, green: rS = 30 Mpc). We calculated the
means and the variances for each distribution and plotted the corre-
sponding Gaussian distributions with light dashed–dotted lines.

On the left-hand panel of Fig. 12, we can see the statistics for the
observed region with the dashed curves showing again the measured
distributions at different scales (black: rS = 10 Mpc, red: rS =
20 Mpc, green: rS = 30 Mpc). We modelled the distribution by a
lognormal (see Coles & Jones 1991) and calculated the best fit
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using a non-linear least-squares fit based on a gradient-expansion
algorithm.17 For that, we parametrized the lognormal distribution
as

P (δm| p) = a

log(1 + δm)
exp

[
b (log(1 + δm) − c)2)

]
, (57)

with p = [a, b, c] being a set of parameters. The results of the best
fits normalized with the number of cells are shown as the continu-
ous lines on the left-hand panel in Fig. 12. One can appreciate in
all curves for w > 0 small tails towards low densities and long tails
towards high densities showing a clear deviation from Gaussianity.
The measured distributions are well fitted by the lognormal distri-
bution of smoothed density for smoothing radii rS of 10, 20 and
30 Mpc. We also calculated the mean and the variance and plotted
the corresponding Gaussian distributions with light dashed–dotted
lines. We therefore conclude that the distribution of the matter field
is in good agreement with the lognormal distribution at least in the
scale range of about 10 � rS � 30 Mpc. This result is especially
strong, since we did not assume a lognormal prior distribution in
the reconstruction method. From a frequentist approach, the WF
just gives the least-squares estimator without imposing any sta-
tistical distribution on the matter distribution. The picture from a
Bayesian perspective is more precise: a Gaussian prior distribution
for the underlying density field is assumed. The posterior distribu-
tion, however, is conditioned on the data, which finally imposes its
statistical behaviour on to the reconstruction, as can be seen in our
results.

6 C O N C L U S I O N S

We have presented the first application of the ARGO computer code
to observational data. In particular, we have performed a recon-
struction of the density field based on data from Sample dr6fix of
the NYU-VAGC (see Section 2). This yielded the largest Wiener
reconstruction of the LSS made to date requiring the effective in-
version of a matrix with about 108 × 108 entries. The use of opti-
mized iterative inversion schemes within an operator formalism (see
Kitaura & Enßlin 2008), together with a careful treatment of aliasing
effects (see Jasche et al. 2009), permitted us to recover the field on
an Mpc mesh with an effective resolution of the order of ∼10 Mpc.
Furthermore, we have investigated in detail the statistical problem,
in particular the noise covariance employed for performing Wiener
reconstructions.

We have demonstrated that Wiener filtering leads to different
results from those obtained by the commonly used method of inverse
weighting the galaxies with the selection function. Both methods
are comparable when the galaxy number counts per cell is high.
However, in regions with sparse observed galaxy densities inverse
weighting delivers very noisy reconstructions. This finding could
have important consequences in power-spectrum estimation and
galaxy biasing estimation on large scales.

As part of the results the Sloan Great Wall has been presented in
detail (see Section 5.2) and some other prominent structures, such as
the Coma, the Leo and the Hercules Cluster, have been discussed,
as well as the detection of a large void region (see Section 5.3).
Our results also show the detection of overdensity regions close to
edges of the mask and predictions for structures in within gaps in
the mask which compare well with the DR7 data in which the gaps
are filled (see Section 5.4). Finally, we have analysed the statistical
distribution of the density field finding a good agreement with the
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lognormal distribution for Gaussian smoothing with radii in the
range 10 � rS � 30 Mpc. We hope that this work highlights the
potential of Bayesian LSS reconstructions for cosmology and is
helpful in establishing them as a widely used technique.
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Gott J. R. I., Jurić M., Schlegel D., Hoyle F., Vogeley M., Tegmark M.,

Bahcall N., Brinkmann J., 2005, ApJ, 624, 463
Gunn J. E. et al., 1998, AJ, 116, 3040
Gunn J. E. et al., 2006, AJ, 131, 2332
Hamann J., Hannestad S., Melchiorri A., Wong Y. Y. Y., 2008, J. Cosmology

Astroparticle Phys., 7, 17
Hockney R. W., Eastwood J. W., 1981, Computer Simulation Using Particles.

McGraw-Hill, New York
Hoffman Y., 1994, in Balkowski C., Kraan-Korteweg R. C., eds, ASP Conf.

Ser. Vol. 67, Unveiling Large-Scale Structures Behind the Milky Way.
Astron. Soc. Pac., San Francisco, p. 185

Hogg D. W., Finkbeiner D. P., Schlegel D. J., Gunn J. E., 2001, AJ, 122,
2129

Icke V., van de Weygaert R., 1991, QJRAS, 32, 85
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